

Contents
Introduction .. 3

Custom Office Solutions, And Why They Matter .. 3

Reporting on Data, Actionably .. 3

VBA and VSTO: OK on the Client, No-Go on the Server .. 4

OfficeWriter to the Rescue ... 5

The OfficeWriter Developer Story .. 5

Imperative vs. Declarative: Two Views of Data-Driven Documents ... 6

The ExcelTemplate Object: for Power Users and Developers .. 6

The Business User’s Declarative Environment .. 7

Binding Data to Workbooks .. 7

Grouping and Nesting ... 8

WordTemplate: Bringing Structured Data to Documents .. 8

Coding All the Way: Using the OfficeWriter Application Objects ... 10

Developers are Data Specialists .. 13

The OfficeWriter BI Story .. 14

A Split Personality? ... 16

Not Just Docs: OfficeWriter Turns Word into Pitchbook Engine .. 16

Maximizing Investments ... 17

Introduction
SoftArtisans’ OfficeWriter takes Microsoft’s Excel and Word and transforms them from mere
spreadsheet and word processing applications into full-fledged data presentation and Business
Intelligence delivery platforms.

OfficeWriter dates back to the early days of Microsoft’s Active Server Pages technology. I remember
when the first version came out, as I was new to Web development and I wanted a way to return data in
Excel format without resorting to generating simple CSV (comma separated values)-formatted files.
SoftArtisans’ ExcelWriter offered just the solution I needed, and I was duly impressed.

More than a decade later, the ExcelWriter product endures, though it’s changed quite a bit. It now, of
course, is a .NET-based product and, along with WordWriter, has become a component of OfficeWriter,
which provides support for both Word documents and Excel workbooks.

But the growth is more profound than that. OfficeWriter now integrates with SQL Server Reporting
Services (SSRS) and SharePoint. It offers comprehensive programmable object models for Excel and
Word, and offers an add-in to each of these applications to make the SSRS integration even better.
OfficeWriter is now a full-fledged Business Intelligence (BI) product, even as it remains a highly
sophisticated developer tool.

Over the years, I’ve become very specialized in BI myself. And as I also work as an analyst focusing on
the Microsoft stack, I’m keenly interested in products that enhance the stack’s value, especially when it
comes to BI. It is with all that in mind that SoftArtisans and I provide this review of OfficeWriter, which
covers not just the product’s features and capabilities, but also the context of their importance to
Microsoft BI.

Custom Office Solutions, And Why They Matter
Microsoft Office is tightly embedded into the world's businesses. Office file formats are standards in and
of themselves: most budgets, financial models and even status reports are produced in Excel, and
virtually all letters and contracts are produced in Word. Delivering reports as data-driven documents in
Office format lets business users feel ownership of the data and a greater intimacy in their
understanding of it. It garners more attention and creates more buy-in.

The Office applications themselves are familiar to people, so people feel comfortable exploring
information within the apps, instead of just consuming it. Providing a report in HTML or PDF format is at
best like sitting at an intimate table in a large restaurant. Providing a report in Office format is akin to
serving a meal in someone else’s kitchen, and letting them help cook. OfficeWriter provides those
home-cooked reports in Office format, and does so in both business user- and developer-friendly ways.
As this review progresses, I hope you’ll appreciate how nicely this works and how valuable it is.

Reporting on Data, Actionably
Excel is arguably the world’s most pervasive analysis and calculation tool. While not always the ideal
tool for storing data, it is an excellent tool for data discovery. Features in all recent versions of Excel,

like Charts and PivotTables, as well as Excel 2007 features like Data Bars and Conditional Formatting,
and Excel 2010 features like Sparklines, together make Excel a very powerful analysis tool.

Word is not used for data presentation as frequently as is Excel, and its data visualization and analysis
features are not as rich as those of its spreadsheet cousin. However, for documents that are truly
documents – i.e. those which require precise pagination, margins, text flow, and other word processing
niceties – Word is a great reporting vehicle.

So Excel and Word file formats, then, are effective delivery containers for data-driven content. But
while they do have provision for the import of external data (for example, using the Data tab on Excel's
ribbon or the mail merge facility in Word), integrating data deep into the fabric of a word processing
document or a spreadsheet is difficult to do through such import facilities. Going further can require
venturing into more code-oriented approaches.

VBA and VSTO: OK on the Client, No-Go on the Server
Import facilities are a start, but a more precise method of data manipulation is accomplished through
the use of macros written in Visual Basic for Applications (VBA) or, for more experienced developers,
.NET code created with Visual Studio Tools for Office (VSTO). Solutions developed using these two
technologies take advantage of a programming object model that provides full access to workbooks or
documents, their formatting and their content, allowing data to be interspersed in the way the
developer or customer requires.

But VBA and VSTO are not the perfect tools for producing documents and spreadsheets as reports.
There are a number of reasons for this. First, writing code in VBA, VB .NET or C# (the last two of which
are the languages VSTO code can be written in most easily), is not especially easy for the business users
and information workers who need to prepare these reports. Second, VBA and VSTO are ill-suited to
many scenarios where documents need to be produced though code, because many such scenarios
involve code running on the server.

In Web applications, or those where a high volume of documents need to be created, documents are
best produced in server-side processes. But VSTO and VBA require the actual Office applications, making
them unsuitable for server execution. For reasons of stability, scalability and speed (as well as licensing
restrictions on using client applications in server processes), generating the file content directly, rather
than manipulating Office applications to produce them, is what is required. VSTO and VBA, therefore,
do not supply the right solution.

How can we generate Office files without using Office itself? Microsoft offers a seemingly plausible
solution: an API (Application Programming Interface) for its newer file formats, called the Open XML API.
But while this API is appropriate for server-side execution, its object model’s paradigm is much more
oriented to the Open XML schema, file layout and objects than to concepts at the higher level of Word
documents and Excel workbooks. It also does not work for the Office 97-2003 binary file formats.

Where does that put us? We have now considered Office import facilities, VBA, VSTO and the OpenXML
API, but none of these options provides the full range of features, file format-compatibility and server-
side performance that we need. Yes, Office gives us choices, but it also forces difficult trade-offs.

OfficeWriter to the Rescue
This leaves a big gap, and OfficeWriter from SoftArtisans fills it. It does so by providing an application-
level object model, compatibility with the older binary and newer Open XML file formats, and
accessibility to business users, all on a server scale. OfficeWriter provides a user-accessible data
templating framework and a programmable object model, both of which are server-friendly and run
completely independently of the Office apps themselves.

The common need for server-generated, Office-formatted reports, OfficeWriter’s ability to produce
them, and the unique ways in which it does, is compelling on its own. But OfficeWriter’s capabilities
have important facets and applications beyond what we’ve already described. As previously stated,
OfficeWriter integrates with SQL Server Reporting Services, and this allows it to further integrate with a
number of data sources including SQL Server Analysis Services and even non-Microsoft data sources like
Hyperion Essbase, SAP BW (a.k.a. NetWeaver BI), Teradata, and Oracle. Further, OfficeWriter’s
integration with SharePoint allows it to publish SharePoint list and Business Connectivity Services data in
Office documents, and push all of these data-driven documents and workbooks out via SharePoint to
business users, for maximum collaboration with minimal code.

In this review, we will examine these complimentary capabilities of the product. We will examine
OfficeWriter’s use as a developer tool, as a BI tool with Excel and as a data-driven document and
presentation tool with Word. We’ll also look at how OfficeWriter significantly enhances the value
customers can derive from existing, and often significant, investments in Microsoft technology.

The OfficeWriter Developer Story
Business Intelligence software, in an industry-general sense, tends to seclude itself as a specialty, niche
category of technology. Many BI tools are expensive, stand-alone and, even if they are products from
the so-called “mega-vendor” software companies like IBM, Oracle and SAP, they exhibit traits of their
acquired pure-play BI company heritage. Similarly, most mainstream software developers also view BI
technology as specialized, and thus separate from, and irrelevant to, their application development and
relational database work. This is a pity, because BI is most powerful when integrated with mainstream
technology, in mainstream applications, with implementation participation from mainstream
developers.

OfficeWriter is one of a select few tools on the market that bridges the mainstream-niche BI gap,
because it is a mainstream developer tool and a BI tool. We’ll cover each of these two sides of the
product, and we’ll begin now with the developer category. As you read through this section and
become familiar with the product’s programmability, keep in mind that one of its ultimate destinations
(and one of yours, by using it) is the delivery of BI content, in a form easily accessible by, and actionable
to, business users running your application.

As we have already mentioned, OfficeWriter’s underlying object model is exposed both in a
programmable form as well as through a templating framework. We’ll take a look at each interface, and
we’ll also discuss how to use them together, but let’s first consider why the availability of both is
sensible and advantageous.

Imperative vs. Declarative: Two Views of Data-Driven Documents
Throughout the last 20 years or so of programming and in the world of word processing as well, there
have been two approaches to getting things done. One involves the issuance of imperative commands;
the other involves a more declarative and often visual method of specifying what is needed. This
contrast is demonstrated nicely in Web page design: you can edit a Web page’s HTML markup directly
and then see the impact by viewing the page, or you can edit the page through a visual designer, and
accomplish the editing and viewing simultaneously.

The visual approach is commonly referred to as WYSIWYG, which stands for “what you see is what you
get.” A computer science professor of mine once referred to the command-based, imperative approach
as YAFIYGI, which stands for “you asked for it, you got it.” OfficeWriter offers you similar choices. On
the imperative/“YAFIYGI” side lies direct programming against the OfficeWriter object models. With this
option, you write imperative code to create or modify a document’s content, formatting and/or
structure. On the declarative/“WYSIWYG” side lies the templating framework, wherein you insert
special placeholder codes (mail merge codes in Word, or special Data Markers in Excel) that will later be
substituted with specific columns/fields from data sources that you bind to the document. The YAFIYGI
approach is geared to developers who prefer to integrate application data into a document through
explicit commands that govern the data’s placement. The WYSIWYG approach instead allows
OfficeWriter to take an existing document and insert specific data items at specific positions within it.

The ExcelTemplate Object: for Power Users and Developers
Figure 1 shows a simple Excel spreadsheet prepared for use with the ExcelTemplate object. It consists of
a title graphic and text, and a simple 4-column table, with column headers and a row of content,
followed by a single blank row. The main row of content contains four data markers, each of which is
positioned in one of the table’s columns. The place holders reference a data source called ProductQuery
and, from the leftmost column to the rightmost column, the ProductNumber, Name, Subcategory and
ListPrice fields within that data source.

When this document is rendered, the data markers will be substituted with the actual data values for
their corresponding data fields. What’s more, if the data source contains more than one row of data, a
spreadsheet row will be inserted after row 6 (the row containing the data markers) for each additional
row in the data set. Figure 2 shows the rendered output.

Figure 1

Figure 2

The Business User’s Declarative Environment
The amount of code that would be required to generate the output shown in Figure 2 without the
template is not huge, but for a business user, it wouldn’t be insignificant either. Most business users
likely wouldn’t write such code, but could easily produce the spreadsheet shown in Figure 1. Simply by
placing data markers in the format %%=rowset.columnname within a sheet, business users can easily
map out what data should be placed where. As long as all data markers for a given rowset appear in the
same spreadsheet row, the report is ready to have data bound to it and render the final report.

Binding Data to Workbooks
There are a couple of ways to go about supplying data to the spreadsheet. One of them does require
writing code, but very little. The core C# code required to bind the data, then render the populated
spreadsheet as PriceListRendered.xlsx and return it to a Web user to be opened in Excel is shown in
Listing 1.

ExcelTemplate xlt = new ExcelTemplate();
xlt.Open(Page.MapPath("templates/PriceList.xlsx");
DataBindingProperties basicBindingProperties = xlt.CreateDataBindingProperties();
xlt.BindData(PriceListDs, "ProductQuery", basicBindingProperties);

xlt.Process();
xlt.Save(Response,"PriceListRendered.xlsx", false);

Listing 1

The code in Listing 1 assumes that a) the SoftArtisans.OfficeWriter.ExcelWriter assembly has been
referenced, b) its namespace has been imported and c) an ADO.NET DataSet called PriceListDs,
containing the price list data, has already been created and that its column names are identical to the
field names referenced in the spreadsheet’s data markers.

BindData can be called multiple times, with different data sources passed in its first parameter each
time. For each BindData call, the same DataBindingProperties object can be used or unique ones can be
created, each ostensibly with different property value settings. The DataSource passed to BindData can
be an ADO.NET DataTable, DataSet, an object array or any object that implements IDataReader.1

Grouping and Nesting

Simply populating a rowset of data into a sheet, as shown in Figures 1 and 2, is fine, but sometimes data
is more hierarchical than such a structure supports. For such scenarios, the Enterprise Edition of
ExcelWriter supports grouped/nested data. Markers like %%group, %%header and %%footer are used
to group and format data; ExcelWriter looks for a standard data marker in the same column as the
%%group data marker to determine which column to group on.

There’s more to the ExcelTemplate object than we can cover in this review, but the overall concept
should now be clear: Excel can be used as a powerful report writer against a wide variety of data. Most
of the work is done in the spreadsheet templates themselves, requiring only the few lines of code shown
in Listing 1 to integrate the reports into an application.

WordTemplate: Bringing Structured Data to Documents
SoftArtisans’ WordWriter product, and its WordTemplate object, does for word processing documents
what ExcelTemplate does for spreadsheets: it allows business users to author standard documents, and
insert special markers to indicate how external data should be integrated into the document at a later
time. The WordTemplate object looks for standard Word mail merge codes (rather than the data
markers used by ExcelTemplate), and the Enterprise Edition handles grouping through the use of
standard Word bookmarks, which define bindable, nest-able “repeat blocks.”

Figure 3 shows a page from a Word document template containing seven mail merge codes, which are
contained within a single bookmark, called “Catalog.” The “Catalog” bookmark contains additional
bookmarks within it to allow for the hierarchical relationship between Category, Subcategory and
Product to be handled properly in the document. Figure 4 shows a page from an output document
rendered from the template, and Listing 2 shows the code required to generate the output. Notice the
square bookmark brackets surrounding the various merge codes in Figure 3.

1 The ExcelTemplate object also has a BindRowData method that can be passed ADO.NET DataTable, DataSet or
DataView objects, object arrays or .NET objects which implement IDictionary or IEnumerable. The last three of
these can also be passed to the ExcelTemplate object’s BindColumnData method.

Figure 3

Figure 4

WordTemplate wt = new WordTemplate();
wt.Open(MapPath("templates/NestedCatalogTemplate.docx"));
wt.SetRepeatBlock(GetCatalogData(), "Catalog");
wt.Process();
wt.Save(Page.Response, "ProductCatalog.docx", false);

Listing 2

The code in Listing 2 assumes that the SoftArtisans.OfficeWriter.WordWriter assembly has been
referenced and that the function GetCatalogData returns an ADO.NET DataTable object containing data
corresponding to that function name. The call to the WordTemplate object’s SetRepeatBlock method
binds the DataTable object to the “Catalog” bookmark shown, among others, in the Bookmark dialog in
Figure 3.

The WordTemplate object’s SetRepeatBlock method, as it’s used in Listing 2, is analogous to the
ExcelTemplate object’s BindData method as it’s used in Listing 1. The WordTemplate and ExcelTemplate
objects have the methods Open, Process and Save in common.

OfficeWriter’s ExcelTemplate and WordTemplate objects provide enormous power. They can be
integrated into an application with very little coding, and later in this review we’ll see how Reporting
Services integration can bring their power to bear without any code at all. Meanwhile, if you want to
write some code, the Template objects provide impressive programmability, allowing for simple
implementation or tight application integration.

Coding All the Way: Using the OfficeWriter Application Objects
But what if WYSIWYG isn’t your bag? What if it’s “YAFIYGI or bust” for you? Then the ExcelApplication
and WordApplication objects are what you seek. These tools allow you to create a workbook or word
processing document in code, with all content and formatting programmatically determined. You can
insert data directly, or you can even insert data markers (or merge codes in the case of Word
documents) programmatically and then use the Template objects to populate the data. As a developer,
you have full control.

Figure 5 shows a partial page of a data-driven document built completely from code using the
WordApplication object. It contains data from Microsoft’s AdventureWorks sample database;
specifically, it shows orders by salesperson.

Figure 5

The code used to produce this document uses WordWriter WordApplication, Document, Table, TableCell
and Shading objects to create a formatted table that will be populated with data. Within the table, the
code loops through a DataReader with salesperson data to create the section for each salesperson,
inserting the salesperson’s name. Within each salesperson’s section, the code inserts merge codes for
date and sales amount and creates a bookmark containing them both. The code then loops through all
the bookmarks it created and, using a WordTemplate object attached to the Document object in
memory, binds a DataTable with sales data for the corresponding salesperson, using the SetRepeatBlock
method.

Figure 6 shows a manually created Excel workbook, waiting to accept data. Figure 7 shows a populated
version built using ExcelWriter’s ExcelApplication object.

Figure 6

Figure 7

ExcelWriter objects including ExcelApplication, Workbook, Worksheet and Chart were used, along with
ADO.NET DataTable and DataReader objects, to build the content shown in Figure 7.

Although the initial spreadsheet in Figure 6 was created manually and updated by the ExcelApplication
object, workbooks can in fact be created completely from code, completely in memory and streamed
back to the user without a physical file ever being saved to disk on the server. So 100% YAFIYGI
solutions are possible, and for relatively text-heavy workbooks, they are quite feasible. However, for
highly graphical workbooks, where attractive output is required, manual layout can make for better
aesthetics, as in this case.

Developers are Data Specialists
What we’ve seen in this section of our review is that OfficeWriter is extremely developer-friendly,
allowing completely code-driven solutions, low-code power-user solutions, and hybrids of the two.
Were these features the full extent of OfficeWriter’s capabilities, it would already be an extremely

useful tool. But the product goes well beyond that; its integration with SQL Server Reporting Services,
and use of Excel and Word as both authoring and delivery vehicles, make OfficeWriter a standalone
Business Intelligence tool. Used in this mode, no code is required whatsoever. We explore this aspect
of the OfficeWriter product next.

The OfficeWriter BI Story
BI professionals have a love/hate relationship with Microsoft Office, and especially with Excel. BI pros
appreciate the power of Excel and the degree of autonomy it provides users, thus relieving central IT
from the burden of producing highly customized analyses whose importance may be high, but whose
usefulness requirements may be temporary. Excel is a powerful query tool; its charting engine provides
excellent data visualization functionality, and features like conditional formatting and Sparklines allow
users to turn spreadsheets into bona fide scorecards.

Excel can also function as a quasi-database, in that the individual sheets in a workbook can store data
and act comparably to tables in a relational database. For some users, this functionality provides
temptation to use Excel as if it were genuinely a database, creating full-fledged BI solutions that are
completely self-contained within workbooks. By, in effect, creating a data mart in a spreadsheet –
sometimes humorously referred to as a “spreadmart” – business users unwittingly abuse Excel by taking
it into scenarios beyond its intended design.

In the love/hate relationship, the spreadmart phenomenon catalyzes the latter. There are several
reasons for this, each a manifestation of where Excel falls short of a true database. To begin with, data
in spreadsheets will become “stale” (and thus inaccurate) unless frequently updated. Data in
spreadsheets is also subject to erroneous modification, whether accidental or intentional. Worse yet,
spreadsheets are often shared as email attachments, resulting in multiple copies of spreadmarts
delivered to individual users’ hard drives, each of which is subject to the vulnerabilities just described.

Things get really bad when large volumes of data are stored in workbooks…because while Excel can
query them, it does not possess a true database engine. In fact, the performance Excel delivers when
querying data in its own workbooks can be particularly deficient.

We’ve seen that OfficeWriter can help. We’ve seen how it safeguards against Excel’s downsides while
allowing business users to take advantage of Excel’s analysis and data visualization capabilities. We’ve
seen how OfficeWriter populates Excel workbooks with data stored externally. Whether through the
use of data markers and a little code using the ExcelTemplate object, or a purely imperative coding
approach using the ExcelApplication object, OfficeWriter delivers on Excel’s promise as a data
presentation vehicle, while keeping the source data itself out of the spreadsheet.

What we haven’t seen yet is how OfficeWriter can be used in conjunction with SQL Server Reporting
Services (SSRS), such that the query, orchestration of rendering, and management/delivery of
subscriptions are handled by the SSRS infrastructure. Query design is also “offloaded” to SSRS,
specifically the Visual Studio-based report designer or the standalone Report Builder tool. Because the
data sources bound to spreadsheets are the queries within the reports, no data binding code is required.

And because both Report Builder and the Visual Studio report designer have their own user-friendly
query designers, no SQL skills are required either. What’s more, SSRS can connect to Analysis Services
cubes and its query designers can generate the Analysis Services MDX (MultiDimensional eXpressions)
needed to query them. That means that even OLAP (online analytical processing) reporting is enabled by
OfficeWriter, making it a true BI tool and not merely an alternative relational report writer.

The OfficeWriter-SSRS integration consists of three OfficeWriter capabilities:

1. Add-ins for Word and Excel provide the ability to open existing reports, and select queries from
them (in other words, select from one of the existing datasets already defined in the report)

2. Using the same data markers supported by the ExcelTemplate object and the same mail merge
code and bookmark conventions supported by the WordTemplate object, users can indicate
where within a document they would like specific fields from the selected query(ies) to appear.
Users simply utilize data markers and merge codes to point to the query they selected and
columns within that query. With the Enterprise Edition, and using an add-in button, SSRS
formulas can also be inserted in Excel workbooks and Word documents. For workbooks, Excel
formulas can be inserted as well. Business users and others may find the latter to be more
powerful and easy to use.

3. Reports can be run interactively through the add-in. But they can also be run from any SSRS
report viewer environment at run-time by exporting a report and selecting “Excel designed by
OfficeWriter” or “Word designed by OfficeWriter” as the output format. Report subscriptions
that are configured with those output formats can also be used for report delivery.

OfficeWriter makes all this possible by storing the template Excel workbook (i.e. the one with the data
markers) or Word document (i.e. the one with the merge codes), as embedded files within the Reporting
Services RDL file. This means that any combination of native SSRS, WordWriter and ExcelWriter content
may be contained together within a single RDL file, and that the SSRS engine can produce any or all of
the renderings on-demand or on a subscription basis.

These capabilities accommodate a variety of scenarios including:

• Using the SSRS designers exclusively for query design, then subsequently designing OfficeWriter
reports in Word and/or Excel – effectively delivering a no-code version of the WordTemplate
and ExcelTemplate objects’ experience.

• Taking pre-existing, richly designed SSRS reports and re-purposing their queries to build analyses
or reports in Excel or Word, quickly and easily, with the OfficeWriter SSRS add-ins.

• Building rich, native SSRS reports and using OfficeWriter to build faithful likenesses of them in
Word and/or Excel. The OfficeWriter “ports” provide a way to render the original report’s
content in Word/Excel without the loss of quality, detail or interactivity that often occurs when
such rich reports are exported to Word/Excel using SSRS’ native export capabilities.

No matter which of the above scenarios you utilize, OfficeWriter lets you use Word and Excel as BI
presentation technologies without the downside of storing data in spreadsheets or limiting yourself to
simple mail merge scenarios in Word. Your production databases can be used as they would be from a

conventional SSRS report, but you gain access to the data visualization and analysis features of Excel, the
layout and pagination features of Word and the added relevancy to users of delivering reports as Office
documents. You will not be creating spreadmarts or even storing your reports in separate Office files,
yet the output produced is in native Office file formats that users appreciate and identify with.

A Split Personality?
When you think about it, it’s really uncanny how a single product can be used in such widely varying
capacities. The fact that OfficeWriter is an extremely powerful developer tool on the one hand, and yet
functions as a completely stand-alone BI tool gives it a versatility that very few other products achieve.

If we take that thinking a step further, we see that this versatility is less about mutually exclusive use
cases and more about an opportunity to mix and match them. We can imagine Reporting Services
reports containing (1) Word and Excel templates that function nicely as application-embedded reports
and (2) native RDL content that allows the report to work in a standard Reporting Services deployment,
be it in SSRS standalone or SharePoint-integrated mode. We can even imagine OfficeWriter reports that
are initially implemented as ExcelApplication or WordApplication-generated, then get ported to SSRS-
based templated reports and then have a native SSRS report implementation added afterwards.

OfficeWriter’s mission is to accommodate the entire YAFIYGI/WYSIWYG spectrum, and to deliver Office-
based output in application-integrated and enterprise reporting environments. Because whether you’re
embedding reports in applications, or allowing end-user authoring and execution, using Excel and Word
as the output format is just plain smart. So why not have a common toolset for both kinds of reporting?

Not Just Docs: OfficeWriter Turns Word into Pitchbook Engine
Excel is such a data-oriented tool, and OfficeWriter for Excel works so nicely with it, that the value
proposition of OfficeWriter for Word may seem only incremental, at first. Sure, purchase orders,
product catalogs and the like make their case for using the product, but the usefulness of OfficeWriter
for Word goes beyond those applications.

In a number of businesses today, and especially in financial services, pitchbooks – page-or-screen
oriented presentations that sell a product or an idea – serve as very important tools for analysts,
business development personnel and marketing specialists. But pitchbooks aren’t easy.

The thing that makes pitchbooks so useful and, often, so effective, is that they meld together highly
improvised content and layout on the one hand, and intersperse up-to-date, relevant data, on the other.
This is also what makes pitchbooks hard. The need to make pitchbooks data-driven often requires some
amount of code and automation. But the potentially inconsistent, irregular and ever-changing format of
the documents makes the YAFIYGI code-based approach to injecting the data difficult to apply. If a
marketing person can’t tell a developer exactly where specific data should go, or can’t have the
discipline to keep to the spec given to the developer in that regard, then how can the developer write
the code to update the document? The pitchbook scenario makes for code that can be difficult to write,

and very brittle once it is written. Clearly then, a WYSIWYG approach is necessary, and OfficeWriter
delivers.

The marketing folks designing pitchbooks and the developers keeping their data up-to-date need not
fight. Using OfficeWriter for Word, the document designer can build the document any way she’d like.
As long as she inserts merge codes and bookmarks into the positions where she wants the data, and as
long as she shares the merge code and bookmark names with her developers, all is well, and everybody
wins. Developers need not worry about document layout – they just need to map data sources to
merge codes and bookmarks. Even if those merge codes and bookmarks get moved around in the
document, the code still works. You could say that OfficeWriter enables “loose coupling” of data and
documents, and that’s exactly what pitchbooks require.

This loose coupling brings a flexibility whose importance should not be underestimated, and the
importance of it is particularly applicable to the use of Office documents as output formats. Almost
since the dawn of PCs, there has been a natural tension between business users and developers.
Business users need things to be flexible – this stems from the agility they must exhibit to work
effectively, competitively and to win new business. Developers need things to be navigable, consistent
and repeatable – this stems from their need to work efficiently and avoid otherwise needless re-work,
especially since that effort is better spent on brand new applications. For the purposes of
maintainability, developers need requirements to be as close to static as possible; but for the purposes
of value, business users’ needs must be flexible and dynamic.

What’s great about OfficeWriter is that it lets business users maintain the dynamic canvas of Excel and
Word to get what they need done. But instead of posing a moving target to developers, OfficeWriter
bridges these documents to the more predictable, repeatable world of programming. This removes the
business user-developer tension, and lets everyone get their jobs done. This versatility is great for
pitchbooks, as well as a larger variety of data-driven documents.

Maximizing Investments
What we have seen throughout this review is that, when it comes to BI, many different Microsoft
products and technologies provide important functionality and power. To start with, of course, SQL
Server is a strong, industry-leading database and its Analysis Service component makes affordable BI
available to a very large installed base. But the strength of the stack goes well beyond the data
repositories: Reporting Services is an excellent query and delivery engine for reporting, both against
relational and OLAP data sources; SharePoint works well for simple data lists and the sharing of reports
and documents; and Office applications, especially Word and Excel, are so universally used and
understood that using them as a publishing channel can put BI in everyone’s hands.

The problem is that, out of the box, these products and technologies do not work as cooperatively as
they probably should. Yes, Reporting Services can be used to report on data in SQL Server and Analysis
Services, but non-programmer business users may have difficulty designing these reports. Moreover,
publishing them in their native format, or exporting them to PDF, or even static Office formats, limits

their utility to information workers. Reporting Services integrates with SharePoint, and so does Office,
but ironically these products cohabitate in SharePoint more than they collaborate there. Office itself
has some important data connectivity capabilities, but mail merge in Word and the ability to bring in
query result sets, in bulk, into Excel can only help information workers use their data to a limited degree.

While these products have integration points between them, they don’t reach the full potential for
harmonious integration that they could. Each product provides significant value, to be sure. But there’s
untapped latent value too, especially in the way products might work together. The Microsoft BI stack
whole is somewhat better than the sum of its parts, but it could be better still. A lot better.

That’s where OfficeWriter comes in: it immediately adds value and utility to Office, but then it goes one
important step further. OfficeWriter takes a collection of Microsoft products, including SQL Server,
SharePoint and Office, and creates a positive feedback loop between them. This empowers businesses
to fulfill the real BI vision: taking raw corporate data, and enabling all participants in the business – not
just specialized analysts – to understand it and make insightful decisions based upon it. And because
some or all of these products are widely deployed in small, medium and enterprise businesses around
the world, almost any company can deploy OfficeWriter and increase the value of its Microsoft stack
investment significantly.

This is what good third party products should do: build upon widely-deployed big products from major
vendors, and add a level of refinement that extends the product’s functionality and greatly enhances the
product’s value. So called “mega-vendors” work best at implementing major functionality; their
partners tend to execute best by understanding the application of these technologies in the market and
augmenting their functionality in ways they know customers will appreciate. Mega-vendors need their
partners, and vice-versa. The cooperation underlies a symbiotic relationship between the two parties
that mirrors those in nature. That’s why the partner environment is called an “ecosystem.” OfficeWriter
is a prime example of why it’s so important.

	Introduction
	Custom Office Solutions, And Why They Matter
	Reporting on Data, Actionably
	VBA and VSTO: OK on the Client, No-Go on the Server
	OfficeWriter to the Rescue

	The OfficeWriter Developer Story
	Imperative vs. Declarative: Two Views of Data-Driven Documents
	The ExcelTemplate Object: for Power Users and Developers
	The Business User’s Declarative Environment
	Binding Data to Workbooks
	Grouping and Nesting

	WordTemplate: Bringing Structured Data to Documents
	Coding All the Way: Using the OfficeWriter Application Objects
	Developers are Data Specialists

	The OfficeWriter BI Story
	A Split Personality?

	Not Just Docs: OfficeWriter Turns Word into Pitchbook Engine
	Maximizing Investments

